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Abstract. The equilibrium lattice constant and the bulk modulus of fcc Fe are calculated by
the FP-LMTO method. The use of the generalized gradient approximation in calculating the
electron structure and lattice properties ofγ -Fe is discussed. A local minimum is observed on
the curve of total energy versus the amplitude of the atomic displacements corresponding to
transverse vibrations at the W point of the Brillouin zone. The temperature dependence of the
anharmonic mode effective frequency calculated within the framework of the pseudoharmonic
approximation is found to qualitatively agree with the experimental one. The possibility of
interpreting the structural phase transition as a transition of the ‘active’ phonon mode from the
excited to the basic state is discussed.

1. Introduction

Interest in the theoretical investigation of martensitic phase transitions is being constantly
stimulated by the abundant experimental evidence being accumulated while studying this
problem, which is of prime importance in both basic and applied physics. In the microscopic
description of martensitic phase transitions from first principles, the model based on the
study of the peculiarities of the lattice dynamics [1] has been intensively used in the last
few years. The current status of the band theory and the development of consistentab initio
methods for calculating the electronic structure of crystals have opened up new avenues
for theoretical investigation of the lattice dynamics in the case of d-metal systems [2]. The
band theory based on the density functional concept and the Kohn–Sham method allows
the ground-state properties, including the total energy and the electron density distribution,
to be calculated self-consistently.

After having calculated the total energy, one can find the phonon frequencies for chosen
vibrational modes by the frozen-phonon technique [3] via calculation of the difference in
total energy between the perfect and distorted lattices. The atomic displacements in the
distorted supercell correspond to the chosen normal mode. Next, knowing the normal-mode
amplitude, one finds the phonon frequency with the wave vector commensurate with a vector
of the reciprocal lattice.

The recently developed variational linear-response method [4], unlike the frozen-phonon
technique, does not require the construction of a supercell, and can be used for the calculation
of phonon frequencies with any wave vector in an arbitrarily complex cell. In such an
approach, the dynamic matrix may be expressed in terms of the dielectric matrix describing
the response of the electron density to perturbation. The variational linear-response method
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consists in finding the first-order corrections to the wave functions of the filled electron
states under weak perturbation of the crystalline potential. Such a correction is the solution
of an inhomogeneous second-order differential Schrödinger-like equation. Until recently,
the linear-response method was, as a rule, based on the pseudopotential scheme. The
authors of [5] proposed the muffin-tin orbitals as a rapidly convergent basis set, which
immediately ensured a thorough calculation of the transition metal phonon spectra in good
agreement with experiment. The current state of the art of investigations in this field, and a
comparative analysis of the linear-response technique have been presented in a recent review
[6]. Though the linear-response method surpasses the frozen-phonon technique in efficiency,
the accuracy of the calculation of the phonon frequencies, forces, and displacement-induced
electron density is actually the same. Note that both methods are based on the computational
scheme of the full-potential linear-muffin-tin-orbital (FP-LMTO) method [6, 7] which allows
for the effects of nonsphericity of the electron density and crystalline potential.

The goal of this work is to take account of the anharmonicity effects when investigating
the stability of systems undergoing a structural phase transition in a model based onab initio
calculations of the lattice dynamics. Of course, in theab initio molecular dynamics method
of Car and Parrinello [8], the anharmonic effects are taken into account automatically: the
forces acting on atomic nuclei in the system are calculated from first principles in terms
of the electron density in a large lattice cell, while the system anharmonicity is explicitly
taken into account in solving the equations of motion. Because of the time-consuming
computations involved, the Car–Parrinello method is currently confined to consideration of
systems of no more than several tens of atoms. In such molecular dynamics simulation,
the electron states have been until now calculated by the pseudopotential method, whose
validity in the case of transition metals is still under study [1, 9]. It should be noted that
systems of transition metals are of particular interest in investigating the structural phase
transitions. Hence, the use of theab initio molecular dynamics method is hardly justified
in considering the phase transitions when the anharmonic ‘active’ mode responsible for
the structural phase transition is known. In our opinion, the conventional approaches are
sufficient for describing the dynamics of the anharmonic mode.

In this paper, we use the self-consistent phonon (pseudoharmonic) approximation to
examine the temperature dependence of the dynamical behaviour of the transverse W phonon
in γ -Fe. The choice of the subject of investigation is due to the results of our paper [10], in
which a quasi-harmonic approximation was used to analyse the changes in dynamical and
elastic properties ofα- andγ -Fe with lattice constant variation. A soft mode with transverse
polarization localized at the point W:k = (2π/a)(0.5, 1, 0) of the Brillouin zone (BZ) was
found to exist in theγ -phase of Fe. The mode is likely to be responsible for theγ–α
transition in iron. The atomic displacements in this mode are analogous to the observed
ones [11]. An attempt to compute the phonon frequencies of fcc Fe by the FP-LMTO
frozen-phonon method was made in a recent paper [12]. Several high-symmetry points of
the BZ were examined; however, the point that we are interested in was not considered.
The suggested theoretical investigation may be of great interest, since experimental data for
the high-temperature Fe phase under consideration are still not available.

In the next section of the present paper, the total energy of fccγ -Fe, one of the structural
modifications of iron, is calculated from first principles by the FP-LMTO method [7]. Then
the frozen-phonon technique is used to calculate the dependence of the total energy on the
amplitude of the atomic displacements corresponding to W phonon. As this dependence is
far from quadratic, we use the pseudoharmonic formalism to find the temperature-dependent
frequency of the W phonon, and discuss the results obtained.
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2. Calculation of the band structure of γ-Fe

The magnetic structure and electron properties ofγ -Fe are still not clearly understood
because of the difficulties associated with the experimental study of fcc iron. Theab initio
LMTO method generalized to the case of helical magnetic structure was used in reference
[13] to show that under strong moment–volume instability, the minimum of the total energy
in fcc Fe corresponds to a noncollinear magnetic structure. An analogous result for a
wide range of lattice constant values was obtained in [14] by the augmented-spherical-
wave method using the same approximations: the local spin-density approximation and the
atomic sphere approximation. According to [14], inγ -Fe, the absolute minima of the total
energy for the helical magnetic and nonmagnetic configurations coincide. This supports
our model used in the investigation of the dynamic properties of fcc iron in which we
consider the iron as nonmagnetic, because, distorting the lattice, we will seek the variation
of the system total energy with respect to the absolute minimum. It should be noted that
the calculations mentioned above are nonrelativistic and, as we discussed earlier in [15],
taking into consideration the spin–orbit interaction via solving the Dirac equation for 3d
magnets results in a change in the electron kinetic energy which is comparable, in order of
magnitude, to the correction for noncollinearity of the magnetic structure.

The local spin-density approximation (LDA) for the exchange–correlation energy is
known to give a value of the equilibrium lattice constant somewhat lower than the
experimental one. Repeated attempts to exceed the limits of the local approximation
have been made, and one of the latest realizations, known as the generalized gradient
approximation (GGA) [16], is used in this work for the band calculation of fcc Fe. The use
of the GGA in combination with theab initio full-potential band LAPW technique allowed
the authors of [17] to carry out, for the first time, a reliable calculation of the absolute
minimum of the total energy corresponding to a ferromagnetic state with bcc structure. In
practically all of the previous calculations within the local density approximation, the total
energy minimum obtained for fcc Fe was 4–7 mRyd lower than that for the bcc structure [18].

The present fcc Fe calculation was performed by the FP-LMTO method in the scalar
relativistic approximation, with inclusion of one energy panel for valence electrons. The
charge density of the core electrons was recalculated at each iteration of the self-consistency
procedure. Integration over the BZ was performed using 72 specialk-points in its irreducible
part. Good convergence was ensured by using a double set of basis orbitals with fixed and
properly spacedκ (κ2 is the mean kinetic energy of an electron in the interstitial region).
The maximum values of the angular momentuml in the expansion of the basis functions in
spherical harmonics inside and outside the MT spheres, as well as in the crystalline potential
and charge-density expansions, were chosen in such a way that further increase ofl does
not affect the total energy calculated.

Table 1 illustrates the FP-LMTO total energy calculation for fcc Fe with and without
the use of the GGA (in the latter LDA case, the exchange–correlation potentials of Hedin
and Lundqvist [19] and of Ceperley and Alder [20] were used). In considering the effect
of including the GGA, we should note that, first, the position of the minimum of the
specific energy curve shifts towards the experimental value of the equilibrium volumeV0

corresponding to the lattice constanta0 = 6.78 au, and, second, with the GGA included,
the total energy minimum is considerably lowered. Besides the equilibrium lattice constant
and the total energy, table 1 presents the cohesive energy and the bulk modulusB0 from
our calculation, in comparison with the data of [18]. Unfortunately, in reference [12], based
on the same model as we use, the theoretical values of the equilibrium lattice constant and
B0 for γ -Fe are not presented.
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Table 1. Structural properties of fcc Fe calculated within the GGA and the LDA with the
Hedin–Lundqvist and Ceperley–Alder exchange–correlation potentials (aeq is the equilibrium
lattice constant,Etotal is the corresponding total energy,B0 is the bulk modulus, andEcoh is the
cohesive energy).

aeq (au) B0 (Mbar) Etotal (Ryd) Ecoh (Ryd)

Experiment 6.78
Reference [18]: FP-LAPW (C–A) 6.38 3.44 −2541.200
FP-LMTO (H–L) 6.485 3.11 −2540.5314 0.703
FP-LMTO (C–A) 6.482 3.30 −2541.1032 0.733
FP-LMTO (GGA) 6.623 2.54 −2545.6444 0.612

The shape of theEtotal(V/V0) curve obtained with the use of the GGA is such that
the bulk modulus and cohesive energy values are markedly lower than those calculated
within the LDA. As the experimental data onγ -Fe are extremely meagre, we cannot as yet
conclude that the GGA is the approach of choice in calculating the electronic structure. Note
that one continues searching for an optimum GGA form for calculating the ground-state
properties, especially for materials with magnetic ordering [21].

3. Calculation of the temperature-dependent W phonon frequency

Upon calculation of the equilibrium lattice constantaeq of fcc iron, we can construct for
it an eight-atom supercell. The coordinates of the atoms in units ofaeq are listed in
table 2. The vibrational mode corresponding to the W phonon can be defined, at the
point k = (2π/a)(0.5, 1, 0) of the BZ, through a distorted cell with four displaced atoms.
The displacements given in table 2 correspond to transverse vibrations in a plane that is
perpendicular to thez-axis.

Table 2. Positions of Fe atoms in the tetragonal supercell in units of the cubic lattice constant.

Atom x y z

1 0.0 0.0 0.0
2 1.0 0.0 0.0
3 0.0 0.5 0.5
4 1.0 0.5 0.5
5 1.5− ux 0.5+ uy 0.0
6 1.5+ ux 1.0− uy 0.5
7 0.5+ ux 0.5− uy 0.0
8 0.5− ux 0.0+ uy 0.5

In figure 1 the difference in total energy between the perfect and distorted supercells of
fcc Fe is plotted as a function of the amplitude of the atomic displacementsuq corresponding
to transverse vibrations at the W point of the Brillouin zone.

In calculating the total energy of an eight-atom cell, we used the Ceperley–Alder
exchange–correlation potential, and the equilibrium lattice constant obtained,aeq = 6.482.
The details of the FP-LMTO calculation remained unchanged. As, however, the distortion
of the fcc lattice resulted in a lowered symmetry of the problem, integration over the
irreducible part of the BZ was performed using 80 specialk-points.

We have expressly examined the important question of the choice of MT-sphere radii
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Figure 1. The total energy of the system versus the atomic displacement amplitudeuq (in
units of the lattice constant) for transverse vibrations of the normal W mode. The open squares
correspond to calculated values, and the solid line shows the polynomial approximation.

rMT . The magnitudes of the nonoverlapping MT radii should be such as to enable atomic
displacements in the cell. The relative volume of the MT spheres should be kept large with
respect to the cell volume, so as to avoid the use of empty spheres. In this calculation, for
all Fe atoms,rMT = 2.2 au. The volume of the MT spheres accounted for 0.61 of the cell
volume. Reducing the MT radii leads to a noticeable loss of accuracy in calculations of the
total energy and forces.

To calculate the normal-mode frequency by the frozen-phonon technique, one should
define the total energy of the system as a function of the amplitude of the atomic
displacements corresponding to the given mode. This function1E(uq) is the lattice
potential for the mode. When the potential is close to the quadratic one,1E(uq) = K2u

2
q/2,

at T = 0 one can use the harmonic approximation, taking

ωq = (K2/M)
1/2 (1)

whereM is the reduced mass.
The lattice potential that we obtained for the W phonon is far from quadratic (see

figure 1). It should be especially noted that atuq ' 0.04 there exists a maximum of
1E(uq), the height of which,Eb ∼ 500 K, is below the temperature range ofγ -Fe stability
(T ∼ 900–1000 K). At these temperatures, the vibrations cannot be localized at either local
or global potential wells, and, therefore, the frequency is not determined by the curvature
of 1E(uq) near the potential well bottom, i.e. the standard procedure of the frozen-phonon
technique cannot be used.

In an anharmonic potential, the frequency of the oscillator depends on its energy, and
hence it is determined by the system temperature. Since, when describing the dynamics
of systems undergoing a phase transition, it is important to determine the temperature
dependence of the dynamics of the ‘active’ mode responsible for this transition, one should
use the relevant approaches.

In this paper, to describe the dynamics of the W phonon, which we believe to be
responsible for theγ–α transition in Fe [10], the pseudoharmonic approximation was used.
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According to this approximation, the motion of a particle in an anharmonic potentialU(r)

can be described as a harmonic motion, but subjected to a different (effective) potential
Ũ (r) [22]

Ũ (r) = exp(〈u2〉/(2∂2/∂r2))U(r) (2)

whose temperature dependence is expressed in terms of the correlator of the root mean square
shift 〈u2〉 from the equilibrium position,r0. In turn,r0 is also a function of temperature, and
can be found from the condition∂Ũ/∂r = 0. Having chosen a suitable approximation for
finding 〈u2〉, we get the self-consistent equations from which we can obtain the temperature
dependence of the effective frequency,ω(T ).

To calculateω(T ), we approximated the computed values of1E(uq) by the eighth-order
polynomial

U(r) = ar2+ br4− cr6+ dr8. (3)

For the chosen values of the parameters(a, b, c, d > 0), this potential describes quite well
the behaviour of1E for uq < 0.05, the region for which numerical calculations were
performed, and the increase of the potential at large values ofuq ensures the finiteness of
the motion in the stable phase.

Figure 2. The effective frequency of the transverse vibrations of the normal W mode as a
function of temperature expressed in terms of the energy barrier heightEb.

The dependenceω2(T )/ω2
0 calculated in the classical limit of high temperatures (〈u2〉 =

T/Mω2(T ); ω0 = 42.21 THz is the frequency atT = 0) is shown in figure 2. Unfortunately,
no experimental data for iron are available; however, the temperature dependence of the
frequency of the phonon mode responsible for structural phase transitions that is obtained is
consistent with the experimentally observed ones (see, e.g., [23]). At high temperatures, the
linear dependenceω2(T ) is a universal characteristic for systems which undergo a structural
phase transition [24, 25]. The point at which the minimum of the experimental dependence
ω2(T ) occurs corresponds to the structural phase transition temperature. According to our
model, at this point the oscillator passes from the excited state (over-barrier vibrations) to
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the basic one (vibrations localized near the global minimum) [22]. Therefore the high-
temperature phase is characterized by high-energy vibrations insensitive to the fine structure
of the potential bottom, rather than by the localization of vibrations near the local minima.

The pseudoharmonic approximation can provide only a crude picture of the temperature
behaviour of the anharmonic mode dynamics. A more rigorous approach [26] and numerical
simulation [27] show that in a multi-well potential there is a probability of both basic
(localized near the global and local minima) and excited vibrations at all temperatures.
The density of the vibrational states of such an oscillator is represented by some peaks
corresponding to these vibrations. The positions and intensities of the peaks are temperature
dependent. In the conventional pseudoharmonic approximation used here, the small
probability of vibrational states near the local minima is neglected, and theT -dependence
of the probability of basic and excited states is assumed to have a stepwise behaviour. It is
probably the use of these approximations that leads to a rather small value ofTc ' 0.5Eb
being obtained (figure 2), but this point requires more rigorous consideration. It should
be noted that if the peaks of the vibrational spectrum are poorly resolved, the inelastic
neutron scattering data may be interpreted within the framework of a phonon picture, but the
‘phonon’ peak width is of the order of the phonon energy. In this case, what should be taken
as the anharmonic oscillator frequency is rather obscure. In spite of the above-mentioned
shortcomings of the pseudoharmonic approximation, at this stage of the investigation the
results obtained may be considered quite satisfactory.

Unfortunately, because of the lack of information on the phonon system in high-
temperatureγ -Fe, we cannot compare our results with experimental data. Recently,
experimental data forβ-Zr [28] have given impetus to new theoretical investigations [29].
We hope that the proposed method holds much promise, and that it will stimulate further
theoretical and experimental work.
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